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LETTER TO THE EDITOR

Correlation of internal representations in feed-forward
neural networks

A Engel†
Institut für Theoretische Physik, Otto-von-Guericke Universität, Postfach 4120, D-39016
Magdeburg, Germany

Received 22 April 1996

Abstract. Feed-forward multilayer neural networks implementing random input–output
mappings develop characteristic correlations between the activity of their hidden nodes which are
important for the understanding of the storage and generalization performance of the network.
It is shown how these correlations can be calculated from the joint probability distribution of
the aligning fields at the hidden units for arbitrary decoder function between hidden layer and
output. Explicit results are given for the parity-, and-, and committee-machines with arbitrary
numbers of hidden nodes near saturation.

Multilayer neural networks (MLN) are powerful information processing devices. Because
of their computational abilities they are the workhorses in practical applications of neural
networks and a lot of effort is devoted to a thorough understanding of their functional
principles. At the same time, their theoretical analysis within the framework of statistical
mechanics is much harder than that for the single-layer perceptron. It was realized from the
beginning that the properties of the internal representations defined as the activity patterns
of the hidden units resulting from certain inputs are crucial for the understanding of the
storage and generalization abilities of MLN [1–5]. Qualitatively, the flexibility of MLN
stems from the fact that the different subperceptrons between input and hidden layer can
share the effort to produce the correct output. Thisdivision of labourgives rise to particular
correlations between the activity of the hidden nodes. Near saturation these correlations
become a characteristic feature of the decoder function between hidden units and output of
the MLN under consideration and determine different aspects of its performance.

Severalad hoc approximations have been used to calculate these correlations, e.g.,
it was assumed that all internal representations giving the correct output (so-called legal
internal representations, LIR) are equiprobable [2, 3] or that only internal representations at
the decision boundary of the decoder function occur [3]. In this letter we show how these
correlations between the hidden units can be calculated for a MLN of tree-architecture and
give explicit results for the parity- (PAR), and- (AND) and committee- (COM) machine
with arbitrary numberK of hidden nodes near saturation.

A MLN of tree-architecture is given byN input nodesξik grouped intoK sets ofN/K

nodes each,K hidden nodesτk and one outputσ . The inputsξk = {ξik, i = 1, . . . , N/K} are
coupled to thekth hidden unit by spherical couplingsJk = {Jik ∈ R, i = 1, . . . , N/K, J2
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† E-mail: andreas.engel@physik.uni-magdeburg.de

0305-4470/96/130323+05$19.50c© 1996 IOP Publishing Ltd L323



L324 Letter to the Editor

N/K} according toτk = sgn(Jkξk). Each hidden node has therefore its own set of inputs
(non-overlapping receptive fields). The hidden unitsτk determine the output through a
fixed Boolean functionF({τk}). A set of input–output mappings{ξµ

k , σµ}, µ = 1, . . . , p

is generated at random where each bit is±1 with equal probability. The couplingsJk are
then adjusted in such a way that the MLN gives the desired outputσµ for each inputξµ

k .
This is generically possible only ifp/N = α < αc.

We are interested in the correlations

cn = 1

αN

αN∑
µ=1

τ
µ

1 τ
µ

2 τ
µ

3 · · · τµ
n (1)

near saturation, i.e. forα → αc. From the statistical properties of the inputs it follows that
for permutation invariant Boolean functionsF({τk})

cn = 〈〈τk1τk2 · · · τkn
〉〉 (2)

where 〈〈· · ·〉〉 denotes the average over the input–output pairs andk1, . . . , kn is any set
containingn different natural numbers between 1 andK.

Thecn can be calculated from the joint probability distribution of internal representations

P(τ1, . . . , τk) =
〈〈∫ ∏K

k=1 dµ(Jk)
∏K

k=1 θ(τkJkξ
1
k)

∏
µ θ(σµF ({sgn(Jkξ

µ

k }))∫ ∏K
k=1 dµ(Jk)

∏K
k=1

∏
µ θ(σµF ({sgn(Jkξ

µ

k )}))

〉〉
(3)

The calculation ofP(τ1, . . . , τk) parallels the determination of the local aligning field
distribution for the perceptron [6, 7] (see also [8, 2, 9]). The general result within replica
symmetry is

P(τ1, . . . , τk) =
〈〈

δσ,F ({τk})
∫ ∏

k

Dtk

∏
k H(Qtkτk)

Tr′ηk

∏
k H(Qtkηk)

〉〉
σ

(4)

whereδn,m is the Kronecker symbol and the primed trace Tr′
ηk

= Trηk
δσ,F ({ηk}) is restricted

to the legal internal representations. Moreover Dt = e−t2/2dt/
√

2π andH(x) = ∫ ∞
x

Dt as
usual. We do not display the saddle-point equation necessary to determineQ = √

q/(1 − q)

as a function ofα since we are mainly interested in the saturation limitα → αc which is
characterized for networks with continuous weights byq → 1 and thereforeQ → ∞.

In this limit the integrand in (4) either tends to zero or to one depending on the values
of the tk. When calculatingP(τ1, . . . , τk) explicitly for small K and special decoder
functions one realizes a simple general rule. Consider the system before learning. All
internal representations have ana priori probability 2−K . Those already compatible with
the desired output are not modified, all the others are shifted by the learning processto
the nearest decision boundaryof the decoder function. This is reminiscent of the aligning
field distribution of the simple perceptron [7, 10] and has a natural interpretation within
the cavity approach [9, 11]. On the basis of this general rule it is possible to determine
P(τ1, . . . , τk) for arbitraryK and arbitrary decoder function.

As examples we derive in the following explicit results for the PAR-, AND- and COM-
machines defined by the decoder functions

F({τk}) =
∏
k

τk, F ({τk}) = sgn

(∑
k

τk − K + 1

2

)
and F({τk}) = sgn

(∑
k

τk

)
respectively. For the PAR- and COM-machine we can set all outputs equal to+1 without
loss of generality for symmetry reasons whereas for the AND-machine we have to stick to
random outputsσµ = ±1 with equal probability.
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In the case of the PAR-machine all internal representations are at the decision boundary
of the decoder function. Hence all LIR gain in addition to theira priori weight 2−K

an equal share from the 21−K internal representations that are eliminated by the learning
process. Therefore forα → αc all LIR have equal probability 21−K which results incn = 0
for all n = 1, . . . , K − 1 and cK = 1. On the other hand it is known that the PAR-
machine saturates the upper limit logK/ log 2 for the storage capacity of any two-layer
neural network of tree-architecture [12]. Any machine with lower capacity should therefore
be characterized by additional non-zero correlations between its hidden units.

In the case of the AND-machine there is only one LIR for the outputσ = +1, namely
τ1 = · · · = τK = 1. It contributes1

2 to all cn. If σ = −1 all but one internal representations
are LIR. Only those with exactly oneτk = −1 are at the decision boundary of the decoder
function and consequently only their probability is changed by the learning process. For
symmetry reason it is clear that all of them get an equal share 2−K/K from the elimination
of the internal representationτ1 = · · · = τK = +1 in addition to theira priori weight 2−K .
The calculation of the resulting contribution fromσ = −1 to the correlationscn can be most
easily accomplished by observing thatcn = 0 for all n before learning. To calculatecn after
learning one has hence only to take into account those LIR with exactly oneτk = −1. The
result iscn = 1

2 − n2−K/K. As expected all correlations are dominated by the restrictive
caseσ = +1 of the output.

For the COM-machine the calculation is more involved. As usual, we only consider
odd values ofK. The decision boundary is given by all LIR with

∑
k τk = 1. All these

gain an equal share from the 21−K internal representation that have to be eliminated by the
learning. Hence

P({τk}) = 2−K if
∑

k

τk > 1

P({τk}) = 2−K + 1

2

[(
K

1
2(K − 1)

)]−1

if
∑

k

τk = 1

P({τk}) = 0 otherwise

To determine the values ofcn from thisP({τk}) it is convenient to consider the contribution
from the regular part

P (r)({τk}) = 2−K if
∑

k

τk > 1

and that from the extra part

P (e)({τk}) = 1

2

[(
K

1
2(K − 1)

)]−1

for
∑

k

τk = 1

separately. The regular part contribution to even moments is zero due to symmetry. Its
contribution to odd moments is

c(r)
n = 2−K

1
2 (K−1)∑
m=0

n∑
i=0

(−1)i
(

n

i

)(
K − n

m − i

)
(5)

since i = 0, . . . , n of the m = 0, . . . , 1
2(K − 1) minus ones of a LIR can be found

in τ1, . . . , τn whereas the remaining(m − i) minus ones are to be distributed between the
remaining(K −n) τn+1, . . . , τk. After some algebra using properties of binomial coefficents
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[13] this can be simplified to

c(r)
n = 2−K

n−1∑
i=0

(−1)i
(

n − 1

i

)(
K − n

1
2(K − 1) − i

)
(6)

= 2−K(−1)
1
2 (n−1) (n − 2)!!

(K − 2)(K − 4) · · · (K − n + 1)

(
K − 1

1
2(K − 1)

)
(7)

= 2−K
0( 1

2n) 0(1 − 1
2K) 0(K)√

π 0( 1
2(n − K + 1)) [0( 1

2(K + 1))]2
. (8)

Similarly, one gets for the extra part contribution

c(e)
n = 1

2

[(
K

1
2(K − 1)

)]−1 n∑
i=0

(−1)i
(

n

i

)(
K − n

1
2(K − 1) − i

)
(9)

which results in

c(e)
n = 1

2
(−1)

1
2 (n−1) n!!

K(K − 2)(K − 4) · · · (K − n + 1)
(10)

= 0( 1
2n + 1) 0(1 − 1

2K)

2
√

π 0( 1
2(n − K + 1))

(11)

for n odd and

c(e)
n = −c

(e)

n−1 (12)

if n is even. The final result for the correlations of the COM-machine is hence

cn(K) = 0( 1
2(n + 1)) 0(− 1

2(K))

2
√

π 0( 1
2(n − K))

if n even (13)

cn(K) = 0( 1
2(n)) 0(1 − 1

2(K))√
π 0( 1

2(n − K + 1))

[
0(K)

2K [0( 1
2(K + 1))]2

+ n

2K

]
if n odd. (14)

Note that forn even one hascK−n+1 = (−1)(K+1)/2cn. As an example these results are
shown in figure 1 forK = 25.

It is straightforward to obtain the asymptotic behaviour of the moments forK → ∞.
For the COM-machine momentscn with eithern or K − n small remain the largest ones in
this limit. Explicitly one gets with the abbreviationC = 1/

√
2πK c1 ≈ C, c2 = −1/(2K),

c3 ≈ −C/K, c4 = 3/(2K(K − 2)), c5 ≈ 3C/K2 and cK ≈ (−1)(K−1)/2, cK−1 =
(−1)(K−1)/2/(2K), cK−2 ≈ (−1)(K+1)/2/(2K), cK−3 = (−1)(K+1)/23/(2K(K − 2)), cK−4 ≈
(−1)(K−1)/23/(2K2).

So far we have considered a MLN with fixed decoder function and have determined the
correlationscn resulting near saturation. It is tempting to investigate also the complementary
question and to determine the storage capacity of an ensemble ofK uncoupled perceptrons
with prescribed correlationscn. For the COM-machine it is known, for example, that
already from the prescription ofc1 alone one gets the correct RS-asymptoticsαc

∼= K2 for
the storage capacity [3] (which is, however, known to be unstable with respect to RSB). It
is interesting to see whether the inclusion of other correlations can alter this asymptotics
[14].

Finally it should be noted that the results obtained in this letter rely on the assumption
of replica symmetry for the determination of the aligning field distribution whereas it is
well known that replica symmetry breaking is crucial for the calculation of the storage
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Figure 1. Moments of internal representations for a committee machine withK = 25 hidden
units. The symbols are the results for integern following from (5) and (9), the full and dotted
line are given by (13) and (14), respectively. The inset shows an enlarged region of the plot.

capacity of MLN. On the other hand it is merely thequalitative behaviour of the aligning
field distribution that is important for the determination of thecn. Since this is known to
be hardly modified by RSB [15, 16] it seems likely that the results for the correlations will
not be significantly altered by the inclusion of RSB.

It is a pleasure to thank the Minerva Center for Neural Networks for hospitality during
the initial stages of this work that were performed at BarIlan University in Ramat Gan.
Moreover I am indebted to Professor I Kanter for several interesting remarks on the
manuscript.
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