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LETTER TO THE EDITOR

Correlation of internal representations in feed-forward
neural networks

A Engelf
Institut fur Theoretische Physik, Otto-von-Guericke Univéisit Postfach 4120, D-39016
Magdeburg, Germany

Received 22 April 1996

Abstract. Feed-forward multilayer neural networks implementing random input—output
mappings develop characteristic correlations between the activity of their hidden nodes which are
important for the understanding of the storage and generalization performance of the network.
It is shown how these correlations can be calculated from the joint probability distribution of
the aligning fields at the hidden units for arbitrary decoder function between hidden layer and
output. Explicit results are given for the parity-, and-, and committee-machines with arbitrary
numbers of hidden nodes near saturation.

Multilayer neural networks (MLN) are powerful information processing devices. Because
of their computational abilities they are the workhorses in practical applications of neural
networks and a lot of effort is devoted to a thorough understanding of their functional
principles. At the same time, their theoretical analysis within the framework of statistical
mechanics is much harder than that for the single-layer perceptron. It was realized from the
beginning that the properties of the internal representations defined as the activity patterns
of the hidden units resulting from certain inputs are crucial for the understanding of the
storage and generalization abilities of MLN [1-5]. Qualitatively, the flexibility of MLN
stems from the fact that the different subperceptrons between input and hidden layer can
share the effort to produce the correct output. Tgsion of labourgives rise to particular
correlations between the activity of the hidden nodes. Near saturation these correlations
become a characteristic feature of the decoder function between hidden units and output of
the MLN under consideration and determine different aspects of its performance.

Severalad hoc approximations have been used to calculate these correlations, e.g.,
it was assumed that all internal representations giving the correct output (so-called legal
internal representations, LIR) are equiprobable [2, 3] or that only internal representations at
the decision boundary of the decoder function occur [3]. In this letter we show how these
correlations between the hidden units can be calculated for a MLN of tree-architecture and
give explicit results for the parity- (PAR), and- (AND) and committee- (COM) machine
with arbitrary numberK of hidden nodes near saturation.

A MLN of tree-architecture is given by input nodest;;, grouped intoK sets ofN/K
nodes eachk hidden nodes;, and one output. The inputst, = {&,i =1,..., N/K}are
coupled to thekth hidden unit by spherical couplingg = {Jix € R,i =1,...,N/K, J? =
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N/K} according tor; = sgnJi§;). Each hidden node has therefore its own set of inputs
(non-overlapping receptive fields). The hidden unitsdetermine the output through a
fixed Boolean function” ({z;}). A set of input-output mapping&;,o"},u = 1,...,p
is generated at random where each bit-ik with equal probability. The coupling$, are
then adjusted in such a way that the MLN gives the desired outpubr each input¢;.
This is generically possible only if/N = o < «..

We are interested in the correlations

1 aN
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near saturation, i.e. fax — «.. From the statistical properties of the inputs it follows that
for permutation invariant Boolean functiod&({z;})

= (T Ty =+ - Tk, )) 2

where ((---)) denotes the average over the input—output pairs /and.., k, is any set
containingn different natural numbers between 1 akid
Thec, can be calculated from the joint probability distribution of internal representations

P(t ) = <<f [Tiss () TTiey O (i) [1,0(c"F{sgnJi&h) >>
no T T o T T, 0G0 FsgnJi€l D)

The calculation of P(1y, ..., 7;) parallels the determination of the local aligning field
distribution for the perceptron [6, 7] (see also [8, 2, 9]). The general result within replica
symmetry is

[1; H(Qtti)
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wheres, ., is the Kronecker symbol and the primed trac(gk'Eﬁ Try, 86, F (i) 1S restricted

to the legal internal representations. Moreover=De~*/2dr/«/2r and H(x) = [ Dr as
usual. We do not display the saddle-point equation necessary to detedaing/q /(1 — q)
as a function ofx since we are mainly interested in the saturation limit> «. which is
characterized for networks with continuous weightsgby> 1 and therefored — oo.

In this limit the integrand in (4) either tends to zero or to one depending on the values
of the #. When calculatingP (z1, ..., ©x) explicitly for small K and special decoder
functions one realizes a simple general rule. Consider the system before learning. All
internal representations have arpriori probability 2. Those already compatible with
the desired output are not modified, all the others are shifted by the learning ptocess
the nearest decision boundaof the decoder function. This is reminiscent of the aligning
field distribution of the simple perceptron [7, 10] and has a natural interpretation within
the cavity approach [9, 11]. On the basis of this general rule it is possible to determine
P(1y, ..., ) for arbitrary K and arbitrary decoder function.

As examples we derive in the following explicit results for the PAR-, AND- and COM-
machines defined by the decoder functions

1
Fud) = [= Fduh = sgr(Z w— K+ 2) and  F({n) = sgr(Z rk)
k k k

respectively. For the PAR- and COM-machine we can set all outputs equdl twithout
loss of generality for symmetry reasons whereas for the AND-machine we have to stick to
random outpute” = +1 with equal probability.
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In the case of the PAR-machine all internal representations are at the decision boundary
of the decoder function. Hence all LIR gain in addition to thaipriori weight 2°¥
an equal share from the"2" internal representations that are eliminated by the learning
process. Therefore far — «. all LIR have equal probability 2% which results inc, = 0
foralln =1,...,K —1 andcg = 1. On the other hand it is known that the PAR-
machine saturates the upper limit 1&g log2 for the storage capacity of any two-layer
neural network of tree-architecture [12]. Any machine with lower capacity should therefore
be characterized by additional non-zero correlations between its hidden units.

In the case of the AND-machine there is only one LIR for the outptt +1, namely
Ti=---=1x =1. It contributes% to all ¢,. If o = —1 all but one internal representations
are LIR. Only those with exactly ong = —1 are at the decision boundary of the decoder
function and consequently only their probability is changed by the learning process. For
symmetry reason it is clear that all of them get an equal shafg 2 from the elimination
of the internal representation = - - - = tx = +1 in addition to theira priori weight 27X,

The calculation of the resulting contribution fram= —1 to the correlations, can be most
easily accomplished by observing that= 0 for all n before learning. To calculatg, after
learning one has hence only to take into account those LIR with exactly,ore—1. The
result isc, = % —n2=K/K. As expected all correlations are dominated by the restrictive
caseo = +1 of the output.

For the COM-machine the calculation is more involved. As usual, we only consider
odd values ofK. The decision boundary is given by all LIR wifh', 7, = 1. All these
gain an equal share from thé X internal representation that have to be eliminated by the
learning. Hence

P({m}) =27% it > n>1
k

P =2% 45 (1" }l it Y n=1
() = 5 (;(K—1)> k'L'k_

Puh) =0 otherwise

To determine the values of from this P ({z;}) it is convenient to consider the contribution
from the regular part

PO(up=2% if Y u>1
k
and that from the extra part

1 K -
PO} = = [( )} for =1
T2\l - Xk: ¢

separately. The regular part contribution to even moments is zero due to symmetry. Its
contribution to odd moments is

2ED n\[(K—n
=253 (55 0) ©)
m=0 i=0 L/Nm—1
sincei = 0,...,n of them = O,...,%(K — 1) minus ones of a LIR can be found
in 7y, ..., 7, whereas the remainingn — i) minus ones are to be distributed between the

remaining(K —n) 1,41, ..., 7x. After some algebra using properties of binomial coefficents
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[13] this can be simplified to
n—1
) _ oK B Sfn—1 K—n
o =2 D( i )(;(K—l)—z) ©

(K—2(K—4--(K—n+D\ (K -1

_ ok IF'(Gn) I'(1— 3K) I'(K) @®
T aTGm - K+ ) [PEE + )2

Similarly, one gets for the extra part contribution
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which results in
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1
e = (=1 (10)

(11)

for n odd and
o =- (12)

if n is even. The final result for the correlations of the COM-machine is hence

I'(3(n+ 1) I(—=3(K))

c(K) = 2 Ja T —K) if n even (13)
1 _1
o (K) = F(z(n))l 'l - 3(K)) 1;(1() n ¥ odd. (14)
VETGm—K+1) | 2K [TGK +1)]2 2K

Note that forn even one hasx_,.1 = (—1)&*Y/2¢,. As an example these results are
shown in figure 1 forK = 25.

It is straightforward to obtain the asymptotic behaviour of the momentKfes co.

For the COM-machine momentg with eithern or K —n small remain the largest ones in
this limit. Explicitly one gets with the abbreviatiofi = 1/+/27 K ¢1 ~ C, c; = —1/(2K),

c3 ~ —C/K,cs = 3/QRK(K — 2)),¢cs ~ 3C/K? and cx ~ (—1)KD/2 ¢p 1 =
(—D)E=D2/2K), cxp = (=1)K*D/2)(2K), cx 3 = (1) KTD/23/2K (K —2)), cx_a ~
(—1K-b/23/(2K?).

So far we have considered a MLN with fixed decoder function and have determined the
correlations:, resulting near saturation. It is tempting to investigate also the complementary
guestion and to determine the storage capacity of an ensemiileuotoupled perceptrons
with prescribed correlations,. For the COM-machine it is known, for example, that
already from the prescription @f alone one gets the correct RS-asymptotigs= K2 for
the storage capacity [3] (which is, however, known to be unstable with respect to RSB). It
is interesting to see whether the inclusion of other correlations can alter this asymptotics
[14].

Finally it should be noted that the results obtained in this letter rely on the assumption
of replica symmetry for the determination of the aligning field distribution whereas it is
well known that replica symmetry breaking is crucial for the calculation of the storage
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Figure 1. Moments of internal representations for a committee machine Witk 25 hidden
units. The symbols are the results for integefollowing from (5) and (9), the full and dotted
line are given by (13) and (14), respectively. The inset shows an enlarged region of the plot.

capacity of MLN. On the other hand it is merely thaalitative behaviour of the aligning
field distribution that is important for the determination of #e Since this is known to

be hardly modified by RSB [15, 16] it seems likely that the results for the correlations will
not be significantly altered by the inclusion of RSB.
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